On the Scalability of Linux Kernel Maintainers’ Work

Minghui Zhou
Peking University; Key Laboratory of High Confidence
Software Technologies, Ministry of Education
Beijing, China 100871
zhmh@pku.edu.cn

Audris Mockus

University of Tennesee
Knoxville, TN, USA 37996-2250
audris@utk.edu

ABSTRACT

Open source software ecosystems evolve ways to balance the work-
load among groups of participants ranging from core groups to
peripheral groups. As ecosystems grow, it is not clear whether the
mechanisms that previously made them work will continue to be
relevant or whether new mechanisms will need to evolve. The im-
pact of failure for critical ecosystems such as Linux is enormous, yet
the understanding of why they function and are effective is limited.
We, therefore, aim to understand how the Linux kernel sustains
its growth, how to characterize the workload of maintainers, and
whether or not the existing mechanisms are scalable. We quantify
maintainers’ work through the files that are maintained, and the
change activity and the numbers of contributors in those files. We
find systematic differences among modules; these differences are
stable over time, which suggests that certain architectural features,
commercial interests, or module-specific practices lead to distinct
sustainable equilibria. We find that most of the modules have not
grown appreciably over the last decade; most growth has been ab-
sorbed by a few modules. We also find that the effort per maintainer
does not increase, even though the community has hypothesized
that required effort might increase. However, the distribution of
work among maintainers is highly unbalanced, suggesting that a
few maintainers may experience increasing workload. We find that
the practice of assigning multiple maintainers to a file yields only a
power of 1/2 increase in productivity. We expect that our proposed
framework to quantify maintainer practices will help clarify the
factors that allow rapidly growing ecosystems to be sustainable.

CCS CONCEPTS

« Software and its engineering — Software evolution; Main-
taining software; Open source model; Programming teams;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5105-8/17/09...$15.00
https://doi.org/10.1145/3106237.3106287

27

Qingying Chen
Peking University; Key Laboratory of High Confidence
Software Technologies, Ministry of Education
Beijing, China 100871
qychen@pku.edu.cn

Fengguang Wu
Intel Opensource Technology Center
Shanghai, China 200241
fengguang. wu@intel.com

KEYWORDS

Maintainer’s workload, maintainer scalability, work distribution,
software evolution, Linux kernel, open source ecosystem

ACM Reference format:

Minghui Zhou, Qingying Chen, Audris Mockus, and Fengguang Wu. 2017.
On the Scalability of Linux Kernel Maintainers’ Work. In Proceedings of
2017 11th Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
Paderborn, Germany, September 4-8, 2017 (ESEC/FSE’17), 11 pages.
https://doi.org/10.1145/3106237.3106287

1 INTRODUCTION

Free/libre open source (FLOSS) ecosystems, in particular large
ecosystems such as the Linux kernel, OpenStack, Docker, or An-
droid, represent critical computing infrastructure for our society.
Such ecosystems involve contributions from various participants
who are distributed over the world, and are diverse in skills, in-
terests, and needs. Typically, a small core group does most of the
work and coordinates a much larger group of peripheral partici-
pants [8, 23, 33]. The authority of this core group arises naturally as
a result of their contributions to the project [3, 20], such as writing
code themselves or reviewing patches contributed by others. The
Linux kernel has a fairly sophisticated hierarchical organization
within this core group of contributors referred to as maintainers.
“Subsystem maintainers are responsible for collecting the accepted
patches, do[ing] a final review[,] and submit[ting] them to Linus
Torvalds and [the] main maintainer”'? Understanding how such
core groups function can shed light on Linux and other large ecosys-
tems. In particular, we would like to develop ways to measure the
work maintainers do. Even though a substantial body of literature
has characterized developers’ work [1, 10, 13, 23, 36, 39], what
maintainers do has not been addressed. Maintainers are not regular
developers; unlike core groups in smaller projects some maintainers
do not write code. Consequently it is not clear how to quantify the
work of Linux kernel maintainers (RQ1).

“Maintainers are like editors in the publishing industry”! with
burdensome responsibilities, such as 487 patches in a two-week
period [16] and hundreds of emails a day [27]. The situation may
deteriorate because a popular project often accumulates a rapidly
expanding code base and contributor community. As project grows,

levents.linuxfoundation.org/sites/events/files/slides/collab_linux_kernel_v2.pdf
Zhttps://www.linux.com/blog/role-linux-kernel-maintainer

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

its ability to sustain itself may come into question. Alarms over
the number of major features that will need to be integrated in the
future and the concern about the potential of the current main-
tainer population’s ability to scale with the Linux kernel have been
raised.? This risk is exacerbated by the fact that almost everyone and
every organization in the world relies on the Linux kernel. These
concerns lead to more research questions. How fast does the Linux
ecosystem grow (RQ2)? Has the maintainers’ workload increased
as the ecosystem has expanded (RQ3)? How is the work distributed
among maintainers (RQ4)? In particular, does the 80/20 rule (80%
of work is done by 20% of participants [23]) apply within the core
groups of Linux? If so, the Linux ecosystem exhibits self-similarity
and the same phenomenon is repeated at different scales [28].

Finally, we inquire: how well does the Linux ecosystem scale
(RQ5)? More specifically, to what degree does adding development
resources to a large project decrease productivity and cause dimin-
ishing returns to overall output [6].

According to its creator, the key to the success of the Linux is its
modularity [31]. Inside the system, the modules are arranged in a
structured hierarchy of dependence relations, but modules at the
same level can be developed independently from each other [3]. We,
therefore, assume that the coping mechanisms that make ecosystem
effective allow for adaptations that both are caused by and affect
software architecture (represented by module structure), change
over time, and react to commercial involvement strategies. Observ-
ing differences among Linux kernel modules and the changes that
occur over time may lead to insights regarding what mechanisms
may be at play.

To investigate our research questions we obtained the main-
tainer history for each file of the Linux kernel and quantified each
maintainer’s workload by the number of files under maintenance,
the numbers of commits in the maintained files, and the number of
authors the maintainer was obligated to deal with. We find that the
amount of work had stabilized for the core modules but continued
to grow in the periphery. The number of maintainers grows faster
than the amount of work, thus the providing evidence against the
hypothesized risk that maintainers would be overwhelmed by work.
The distribution of work among maintainers showed that a few
maintainers accomplish most of the work for most modules, con-
firming this aspect of self-similarity. Finally, the investigation of
scalability showed that the practice of assigning multiple maintain-
ers to a file yields only a power of 1/2 increase in productivity (e.g.,
four parallel maintainers are needed to double the overall output).

In the remainder of the paper Section 2 presents the methodology
we used, Section 3 summarizes our findings, Section 5 outlines
limitations, Section 6 discusses related work. The conclusions are
presented in Section 7.

2 METHODOLOGY

We applied a mixed-method approach [7] to understand and quan-
tify how the maintainers of the Linux kernel, the core of the Linux
operating system, work. We used qualitative methods to understand
maintainer behavior and to design suitable measures for maintain-
ers’ work (RQ1). Maintainer activity data were then used to quantify

3https://lwn.net/Articles/703005/

Minghui Zhou, Qingying Chen, Audris Mockus, and Fengguang Wu

28

the growth of the system (RQ2), the growth of maintainers’ work-
loads (RQ3), the work distribution among maintainers (RQ4), and
the scalability of maintainers’ work (RQ5).

2.1 Qualitative Investigation

The Linux kernel has been extensively studied in the past; we
compiled further evidence from recorded artifacts in the version
control system (Git), project web pages, and relevant websites. We
interviewed maintainers to address questions with no coverage in
existing sources.

More specifically, we searched for and read digital records, and
communicated with Linux maintainers to understand project con-
text and practices. We designed metrics and validated results by
combining and triangulating information from disparate sources.
In particular, we went through the following procedure: 1) Read
the existing literature, particularly on the Linux kernel, e.g., [2, 14,
17, 18, 20, 21, 31], to understand the project context and the studied
practices. 2) Inspect Linux web sites looking for project-related
information, such as the standard development process and the
role of maintainers. Examine various blogs, forums, webzines (like
Iwn.net), and news websites (like linux.slashdot.org). Search for
relevant information, such as the practices of maintainers in dif-
ferent subsystems and the trajectories of known maintainers. 3)
Target four maintainers and conduct interviews to understand how
they do their work and the details of maintainer mechanisms that
are difficult to obtain from artifacts, such as whether the tasks and
contributors in different modules vary from each other and how
they vary. Also interview maintainers to validate the findings.

Based on the information we gathered from various sources, the
following quote pithily summarized the maintainers’ work: “Being
a maintainer means you read patches from submitters, handle ques-
tions from both developers and users about things related to the
subsystem (usually bug reports). If a patch looks acceptable, you
test it if possible, and apply it to the relevant git tree and push it
publicly, and notify the author that it was accepted. Every weekday,
these git trees get merged together in the linux-next release, and
inevitably, problems are reported and it is up to the maintainer to
fix them when they affect their portion of the kernel” It suggests
three measurable quantities that should affect maintainer effort.

1. The more files a maintainer oversees, the more time and effort
she will need to devote. Each file under maintenance may need to
be considered when fixing a bug even if it is ultimately not changed.
2. More commits in the maintained files imply more effort for a
maintainer (all other things being equal). In particular, a maintainer
is likely to review and approve changes made to the files she main-
tains. She might also make the changes herself.

3. A maintainer’s effort is likely to increase with the number of
authors contributing to the maintained files. A need for increased
maintainer effort may be caused by “too many cooks spoil the broth”
— effect or the need to learn the different personalities of contribu-
tors and their contribution styles.

We, therefore, use the number of files maintained, the number of
commits committed to the maintained files, and the number of au-
thors in these commits during a time period (month) to characterize
the amount of work for a maintainer. This answers RQ1.

4http://www.kroah.com/log/linux/what_greg_does.html

On the Scalability of Linux Kernel Maintainers’ Work

2.2 Quantitative Analysis

For our quantitative analysis we obtained and prepared data from
the mainline Git repository as described in Section 2.2.1. We selected
seven modules of the Linux kernel that play distinct roles in the
architecture. Section 2.2.2 discusses the differences among these
modules. We define the primary module for a maintainer (used in
several analyses) in Section 2.2.3. The number of commits, authors,
files, maintainers, and new joiners are used to quantify the growth
of the Linux kernel (RQ2). New joiners are identified in Section 2.2.4.
The growth of each maintainer’s workload (RQ3) is calculated in
Section 2.2.5 based on the aforementioned metrics. To understand
the scalability of the maintainers’ work (RQ5), we fit regression
models as introduced in Section 2.2.6.

2.2.1 Data Preparation. We cloned the mainline repository of
Linux kernel maintained by Linus Torvalds® in Dec 2015 and Jan
2017 respectively. We used the 2015 data set for exploration and
present our results based on the 2017 clone. The Linux kernel moved
to Git in 2005; the present study omitted the pre-2005 history of
Linux. We took steps to clean and standardize the raw data for
further analysis [41]. Each observation is a change (a commit may
contain a group of related changes) submitted to the mainline repos-
itory. The repository records who authored the code, when the
code was committed, and the name of the file involved, such as
“drivers/pci/iova.c”

We also obtained the maintainer of the file as well as the module
for that file. From April, 2009, the Linux kernel has included a
file named MAINTAINERS that contains information needed to
discover the maintainer for each file. The file records the name of the
subsystem (e.g., UFS FILESYSTEM), people who maintain it, and the
files associated with this subsystem, and the status of this subsystem,
such as “maintained” (meaning that someone actually looks after
the file) or “supported” (meaning someone is actually paid to look
after the file). In addition, a perl program get_maintainer.pl uses
the MAINTAINERS file to compute a file-to-maintainer mapping.
Using these tools we obtained maintainers for every file in the
Linux kernel for every month since April, 2009.

2.2.2 Modules Used for this Study. Modularity suits the charac-
teristics of the open source production process [3]. Linux kernel
has a folder structure that partially reflects the architecture of its
modules. In particular, 22 folders exist at the first level; some of
these folders, such as “include/documentation,” do not represent a
module; other folders, such as “tools/scripts,” do not contain code
that is a part of a running system. We, therefore, focus on seven fold-
ers that implement the main features, have the most changes, and
may be considered as modules, as described in following passages.®
arch - Each supported processor architecture is in the correspond-
ing folder. For example, the source code for Alpha processors is
maintained in the “alpha” folder.
drivers - This directory contains the code for the drivers. Each
folder is named after each piece or type of hardware. For example,
the “bluetooth” folder holds the code for Bluetooth drivers.
fs - Inside this folder, each file system’s code is in its own folder.
For instance, the ext4 file system’s code is in the “ext4” folder.

Sgit://git kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
Swww.linux.org/threads/the-linux-kernel-the-source-code.4204/

29

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

kernel - The code in this folder controls the kernel itself. For in-
stance, if a debugger needed to trace an issue, the kernel would use
code that originated from source files in this folder to inform the
debugger of all of the actions that the kernel performs.

mm - The memory management folder contains the code for man-
aging the memory.

net - The network folder contains the code for network protocols.
This includes code for IPv6 and Appletalk as well as protocols for
Ethernet, wifi, bluetooth, and other related functions.

sound - This directory has sound driver code for audio cards.

2.2.3 Defining Maintainer’s Primary Module. To investigate phe-
nomena across modules we must define which module a maintainer
works on. As explained in Section 2.2.1, we obtained maintainers
for every file and every month since April 2009. Two complications
arose: 1) Some files, such as all files in the “Documentation” or
“include” folders, do not belong to any module; 2) maintainers often
work on multiple modules, for example, drivers and arch.

We used two approaches to address this problem. First, we re-
port the statistics of the maintained or changed files based on
the actual folders they were located in. We thus referred to the
module as the original module, mody. In the second approach, we
defined a primary module for a maintainer in order to calculate
the average maintainer’s workload for different modules. We as-
sume that the files may be modularized better not by actual folder
structure but by the sets of files a maintainer is maintaining [26].
This definition is distinct from the architectural definitions de-
rived from call flows or data flow graphs. It is also distinct from
the co-change definition used to define modules [24] in which
multiple files are said to have the co-change relationship if all of
those files are changed together in the same commit. We, there-
fore, first obtained the module for each maintainer-month which
had the most files maintained by that maintainer. The module
modp(m) = argmax,,,,q. 3. femod, 1(f, M, m) is the primary mod-
ule for maintainer M at month m; where f is a file, I(f, M, m) is the
indicator function for M being a maintainer of f during month m.

For each file we, therefore, can uniquely obtain mod, based on its
folder and for each maintainer M of the file we define modj; as the
primary module of M. Notably, both modules may vary over time:
mody may change if the file is moved to another folder and mods
may change if the maintainer M changes her set of maintained files.

2.2.4 Identifying Joiners and One-time Contributors. For every
author, we define the first time she authored code in the commit
history as her joining time. We define any author who stayed with
the project for less than one month (from her joining day) as a
one-time contributor (OTC). Our latest data was retrieved in Jan
2017. We exclude joiners in the most recent year for the purpose of
calculating OTCs. We thus avoid classifying developers who might
commit within one year again as OTCs (see Figure 13).

2.2.5 Calculating Workload. The workloads (or productivity)
of individual maintainers is complicated because over 75% of the
files in the Linux kernel have more than one maintainer. To adjust
individual maintainer output we subdivided effort equally among
all maintainers of a file. To accomplish that we produce a weight
for each file-maintainer pair. For example, suppose maintainer M
maintains fj with one other maintainer and f; with two other
maintainers during month m. Suppose, that f is modified twice

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Table 1: Average and median monthly workload of a main-
tainer

drivers | arch | fs | net | sound | kernel | mm

#files 254 | 80.3 | 21 | 20.1 47 2.8 0.9
3.3 6.5 | 10 7 1 1 0.5

#authors 1.6 2.1 21 19 1.5 1.5| 09
0.3 04 1 0.5 0.2 0.7 0.7

#commits 4.9 57 | 538 5.9 5.9 35 1.8
0.4 0.5 1 1 0.3 1 0.8

by one author and f is modified six times by six different authors.
Then maintainer M’s adjusted effort during month mis 1/2 + 1/3 =
5/6 files, 1/2 %2+ 1/3 %6 = 3 commitsand 1/2x 1+ 1/3 %6 = 2.5
authors. This measure preserves overall effort; if we add all the
observations for a month we obtain the total number of maintained
files, commits, and authors for that month. It also allows us to
distribute effort among multiple modules by adding the relevant
quantity for files in that module. More formally, the adjustment
weight for a file f is obtained as:

wn(f) = !

{M : M is a maintainer for f during month m}||
(1)

Table 1 presents the monthly workload of a maintainer in different

modules (modys). Each cell includes two values, one is the aver-

age adjusted workload and the other is median adjusted workload.
Unadjusted workload ignores the fact that multiple maintainers
are working on the same file, and is much higher. For example, for
drivers, the average adjusted number of files that a maintainer main-
tains is 25.4 and unadjusted is 112.8. We, therefore, only consider
adjusted workload in the remainder of the paper. Table 1 shows
substantial differences (statistically significant) between average
and median effort and among modules. These differences, which are
explored in more detail in Section 3, may reflect how the ecosystem
adapts to the variations in architecture, commercial involvement,
and growing workloads.

2.2.6 Regression for Productivity Scaling. To understand the scal-
ability of Linux ecosystem, we investigate how maintainer produc-
tivity scales when more maintainers are added to a set of maintained
files. To model maintainer productivity we used multiple regression
on logarithm-transformed data. The predictor and the response
have much less skewed distribution after the transformation. Fur-
thermore, the model: In Output = a * In NMaintainers + ... hasa
very simple interpretation with Output ~ NMaintainers®, namely,
a represents power, by which the productivity scales as maintainers
are added to a file. We also included other major predictors that are
likely to affect productivity: identity of the maintainer, and identity
of the module. Whereas the individuals and modules greatly affect
productivity, we are not concerned with the estimates for these pre-
dictors; they are nuisance parameters from our perspective and we
adjust for that variation by including them as independent variables
in our model.

3 RESULTS

This section presents the results for RQ2-5. We use mody; when it is
necessary to associate a maintainer with a single module, otherwise
we use mody (modys and mody are defined in Section 2.2.3).

Minghui Zhou, Qingying Chen, Audris Mockus, and Fengguang Wu

30

RQ2: How fast does the Linux ecosystem grow?
The Linux kernel has grown from 10.2 thousand lines of code in
1991 (version 0.01) to 22.3 million lines of code in 2016 (version
4.9). In recent years the rise in popularity of the Android operating
system, which includes the Linux kernel, has made the kernel the
most popular choice for mobile devices, rivaling the installed base of
all other operating systems. We explore how the Linux ecosystem,
particularly the central parts (represented by the seven modules
defined in Section 2.2.2), grows over time in terms of commits,
authors, files, maintainers, and new joiners.

Figure 1 presents the number of commits over time for differ-
ent modules (modp). Modules drivers, arch, net, and sound have
increasing numbers of commits. The other three modules appear
to have a decreasing trend in the last few years. Modules mm and
kernel have the fewest commits for the entire period. Please note
that different scales are used to emphasize similarities in trends
among modules. For example, numbers for the drivers module are
divided by 10, but the numbers for the arch module are divided by
three.

In Figure 2, the number of authors shows almost linear growth
for drivers, arch, and net, whereas the growth for the arch module
slows in the final years. Modules kernel and mm do not seem to
have an increase, similar to their numbers of commits.

The number of maintained files, shown in Figure 3, increases al-
most constantly for almost all modules. The number of maintainers,
shown in Figure 4, also demonstrates a rapid increase for almost
all modules. The drivers module has particularly high increase in
the number of files, which may be explained by the popularity of
Linux with hardware vendors.

However, the inflow of joiners appears to drop, as shown in
Figure 5. In particular, it shows a constant stream of joiners of
approximately 1000/year for drivers, and an obvious decrease for
almost all the other modules. Furthermore, the rate of joiners, even
though it is declining, appears to exceed that of leavers as modules
drivers, arch, and sound show linear growth in the number of
authors (see Figure 2). In some modules, however, leavers appear
to be balanced by joiners, resulting in a constant (or even slightly
declining in net) number of authors contributing per year.

Figure 6 depicts the overall growth of the Linux kernel. The
numbers of commits, authors, files, and maintainers appear to grow
over time. However, the number of joiners does not appear to grow.

In summary, the amount of work measured by commits and
authors appears to have stabilized for the core modules (e.g., kernel
and mm) but continues to grow for the periphery (e.g., drivers).
Some modules, particularly drivers, appear to contain most of the
changes of the system. For example, in the most recent Linux kernel
4.9 (released in December 2016), “two-thirds of the bulk of changes
are drivers’”. The number of maintainers and the number of main-
tained files grow faster than the number of commits or the number
of authors. Because the number of files is the easiest to measure, it
may be the cause of concern expressed in public discussions. The
remaining two measures do not appear to be exploding and appear
to expand much less than the number of maintainers. It may be

"https://www.linux.com/news/linux-kernel-49-here-and-its-largest-release-ever

On the Scalability of Linux Kernel Maintainers’ Work

#commits over time

4000

3000
I
®
\

drivers/10
arch/3
s/

net/1
sound/1
kernel/1
mm/0.4

Number
2000
I

1000
I

T T T T
2009 2010 2011 2012

2013 2014 2015 2016

Calendar year

Figure 1: Numbers of commits in different modules
#authors over time

drivers/5 gt
arch/2
fs/1
net/1
sound/1
kernel/1
mm/0.5

Number
300
I

200
L

T T T T
2009 2010 2011 2012

2013 2014 2015 2016

Calendar year

Figure 2: Numbers of authors in different modules

#files over time

= =i o _ = = f==
g —+— drivers/10
2 84 —2— arch/10
—3— fs/1
—4— net/
8 sound/1
—6— kernel/0.2
mm/0.05

2009 2010 2011 2012 2013 2014 2015 2016

Calendar year

Figure 3: Numbers of maintained files in different modules
#maintainers over time

drivers/10
arch/3
fs/1

net/1
sound/1
kernel/0.5 |+
- mm/0.4

80
L

—
-
-
—4
—i—

Number
60
I
;\

2009 2010 2011 2012 2013 2014 2015 2016

Calendar year

Figure 4: Numbers of maintainers in different modules

31

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

#joiners over time

200
I

LT T - -l
JR T i

B : e AN
2 drivers/5 e o
ER arch2 | e e ‘3 Sy

= fs/1

net/1 5
3 sound/1

kernel/1

mm/1

2010 2011 2012 2013 2014 2015 2016

Calendar year
Figure 5: Numbers of joiners in different modules

Growth of Linux kernel

4d,//*”/%//db__q

#commits/16
#authors/1
#files/16
#maintainers/0.3
#joiners/0.7

4000
I

3000
I

Number
2000
I

tebt

1000
I

0
I

T T T T T
2009 2010 2011 2012 2013

2014 2015 2016

Calendar year

Figure 6: Overall growth of the Linux kernel

troubling to observe that the number of new joiners has been de-
creasing in recent years, but the total number of authors has been
stable or is still expanding, at least for drivers.

RQ3: Has the maintainers’ workload increased
as the ecosystem has expanded?

Whereas the expansion as measured by commits and authors is
contained within a few modules, the Linux kernel has continued to
expand since 2009 both in terms of files and maintainers. Because
both amount of work and number of workers have increased, it
is not clear whether the workload per maintainer has increased.
We calculated both average and median workload per maintainer
on their primary module (modyy) for each year (we also obtained
monthly data, which has similar trends but is more noisy) to deter-
mine whether the maintainers’ work is evenly distributed among
maintainers.

Files. As shown in Figure 7, the number of files does not appear
to be increasing for a median maintainer with one to two files in
kernel, less than one in mm, and up to 12 for fs and arch. The drivers
module appears to be the only module with a slightly increasing
number of files per maintainer. Modules arch and sound appear to
be decreasing all the time. The average number is more sensitive to
extreme maintainers; arch and sound are at the top with 40 or more
files per maintainer (and decreasing) and the rest of the modules
have less than 30 files per maintainer. In particular, kernel and
mm are at the bottom with less than 10 (and that number seems
to hold constant). By comparing average and median workload

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

per maintainer among the seven modules, we can see that sound
is at the bottom for a median maintainer but at the top for an
average maintainer. A further investigation shows that the sound
module had 19 maintainers in 2009 and 58 maintainers in 2016. A
few maintainers are much more productive than others; the most
productive, Jaroslav Kysela and Takashi Iwai, are the maintainers
of the whole sound subsystem. This implies that the work is not
balanced among maintainers.

Commits. As shown in Figure 8, the average number of commits
per maintainer per month appears to be stable over time for most
modules (mm, kernel, drivers, net, and fs). However, arch and sound
have a clear decreasing trend (ranging from 10 to 4), similar to the
situation for the number of files. Again, the mm module is at the
bottom with two commits. The median number of commits per
maintainer per month is less than 1.5 for all modules (not shown).
This suggests what appears to be a rather moderate workload for a
typical maintainer.

Authors. The yearly counts shown in Figure 2 show a rapid
growth in the number of authors for drivers, arch, and net, with
the remaining modules stabilizing. For example, yearly numbers
for drivers increased from 1500 in 2009 to 3000 in 2016. Increase in
maintainer numbers for drivers appears to be rapid also, resulting
in a flat curve of authors per maintainer in this module, as shown
in Figure 9. However, the numbers for sound and arch seem to be
decreasing in a manner similar to the inflow of commits.

Author Churn. Whereas the number of authors a maintainer
must handle over a one-year period stays relatively constant over
time, the effort may increase if each month brings new authors or
the effort may decrease if the same authors contribute over long
periods of time. The number of authors per maintainer encountered
over the last year appears to be much more stable (five for drivers
to seven for mm and fs; 10 for arch and kernel; approximately 15 for
net and sound) as shown in Figure 11 (to reduce noise, the monthly
numbers were smoothed using a moving average with a window
length of four). The monthly numbers of authors per maintainer
were several times lower: 4AU for drivers and arch, 5AU for fs,
net, and sound and 7AU lower for kernel and mm. The high ratios
suggest that author churn from month to month in mm and kernel
may make the work of mm and kernel maintainers more difficult
than the work in the modules with more stable groups of authors,
like drivers.

Figure 10 depicts the average workload of a maintainer in the
Linux kernel. The average numbers of commits, authors, and files
per maintainer appear to decline.

In summary, the maintainers in different modules differ in their
workloads. Most importantly, a maintainer’s workload does not
seem to grow over time; on the contrary, it tends to decrease, par-
ticularly in modules arch and sound. The average values tend to
be much higher than median values, suggesting highly uneven
distribution of the work investigated in RQ4.

RQ4: How is the work distributed among Linux
maintainers?

An average maintainer in the Linux kernel does not appear to have
an increasing workload despite rapid expansion of the ecosystem.
However, the difference between the median and average workload
suggests that a small team of maintainers does most of the work. A

Minghui Zhou, Qingying Chen, Audris Mockus, and Fengguang Wu

32

similar relationship was observed between the core and the periph-
ery of project contributors measured by lines added, issues fixed,
and commits [23]. It is not clear whether the same relationships
would apply to the maintainers at the center of the project, if their
work were measured by number of files maintained, and numbers
of authors and commits for the maintained files. If that relationship
does apply, it may suggest that the Linux kernel ecosystem has
self-similarity [28], i.e., the system has invariants that are preserved
under a scale transformation.

Figure 12 shows the fraction of maintainers who are respon-
sible for 80% of work (#files, #commits and #authors) plotted for
each primary mody;. Module drivers has the smallest core team of
approximately 10% of maintainers handling files for up to 80% of
the authors. At the other extreme, module mm deploys 80% of the
maintainers to do 80% of the work. The other modules have their
own “core teams” containing between 20% and 40% of all maintain-
ers. This appears to support the conjecture of self-similarity, but
the variations among modules, especially the outlier represented
by mm, suggests that the self-similarity may not be completely
uniform and warrants a closer investigation.

In summary, the distribution of work among maintainers appears
to depend on the module. In particular, modules like drivers with
well-modularized maintainers follow the 20/80 rule (i.e., 20% of the
people accomplish 80% of the work), but modules where maintainers
are often also involved in other modules, like mm, have a much
more even distribution of work. Such self-similarity, as in biological
ecosystems, would suggest that similar mechanisms must be at
play in the context of Linux kernel maintainers as at the larger
scale of core/peripheral contributors. Perhaps, to be effective, the
community requires this rather extreme distribution of participants
so as to be both predictable at delivering major features on time
and to be able to incorporate a rich variety of small inputs from a
much wider community.

RQ5: How well does the Linux ecosystem scale?

The growth of the features and the participants may challenge
the core team of the Linux kernel. Discussions swirl around in
the forums and conferences about how to expand the maintainer
model, because, as one critic complained, “As the workload has
increased, it has come to feel like things are getting much worse.”®
At the 2015 Kernel Summit, Linus Torvalds said that he has come
to like the group maintainer model, where more than one person
takes responsibility for a given subsystem. However, numerous
developers were skeptical of the idea.?

To understand whether or not maintainers’ work could scale by
assigning more maintainers to the same files we fit models of main-
tainer productivity. Each observation represents a month (denoted
as m) for a maintainer (denoted as M) and module (denoted as mody).
The response variable was operationalized in three ways according
to our three primary measures: files, authors, and commits. Table 2
presents the attributes of an observation used for the model. To
model number of files (or authors, or commits) per maintainer we
used the average number of maintainers over all maintained files
as an independent variable, as Equation (2) shows. Note that the
adjusted numbers reflect the adjusted contribution of a maintainer.

8https://lwn.net/Articles/703005/

On the Scalability of Linux Kernel Maintainers’ Work

(mean) #oommits

(mean) #authors

Number

(mean) #files a maintainer maintained per month

25
I
/

r

20
I

drivers/1.5
arch/4 - -
fs/1.5
net/1.5
sound/3
kernel/0.3
mm/0.1

15
I

(mean) #files

Prtebt

T T T T T T T T
2009 2010 2011 2012 2013 2014 2015 2016

Calendar year

(median) #files

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

#files a per month
7 8~ < Gee e 3.
. 2= - -—
o Tege Ea N Be e oo nn T, Ge o oo 3
4. N ~
. A Y
< N N /1_1\|
6 N g D
TS~ driversit |T T4 S e it el
27 S~ ach2 p<' Sl 4
-5 fsf2 8 ——s ~
~ —4— net/2 \6,—‘8/
sound/1
- —6— kernel/0.4
mm/0.3

T T T T T T T T
2009 2010 2011 2012 2013 2014 2015 2016

Calendar year

Figure 7: Average and median numbers of files maintained per maintainer

(mean) its a

for per month

/

N

~
~
~

drivers
arch

fs

net
sound
kernel
mm

Prbdte

T T T T T T
2009 2010 2011 2012 2013 2014 2015 2016

Calendar year

Figure 8: Average number of commits per maintainer

(mean) a

for per month

3.0
L

25

20

—+— drivers | *
—2— arch
—3— fs
—4—
——

15

net
sound
kernel
mm

0.5
L

2009 2010 2011 2012 2013 2014 2015 2016

Calendar year

Figure 9: Average number of authors per maintainer

of maintainer’s average

20
L

—+— #files*1
—2— #authors*16
—3— #commits*6

10
L

T T T T T T T T
2009 2010 2011 2012 2013 2014 2015 2016

Calendar year

Figure 10: Average workload per maintainer

33

Table 2: An observation in the model

nF #files maintained by M in module mod during
month m

#files adjusted for the number of maintainers
(adjustment is done using weights defined in
Equation 1)

#authors for the maintained files of M in module
mod during month m adjusted for the number
of maintainers

#commits on the maintained files of M in mod-
ule mod during month m adjusted for the num-
ber of maintainers

#maintainers added over the files maintained
by M in module mod during month m

nfAdj

nAuth

nCmt

nMtr

If it does not depend on the number of co-maintainers, that im-
plies the effort scales linearly: each added maintainer contributes as
much as if she were the sole maintainer. If adding additional main-
tainers to the same file diminishes productivity we would expect a
negative exponent (see Section 2.2.6).

log(n f Adj|nAuth{nCmt) ~ log "Ai" @)
The results are presented in Table 3. In all cases adjusted R? is
fairly high, including 0.92, 0.65 and 0.73. The coefficient of interest
a is close to —.5 and is statistically significant with an extremely
small p-value. Notably, the arch module, in contrast to the other
modules, has the most files and the mm has the fewest (see Table 3).
This means that maintainers for arch were more productive in
terms of maintained files. Maintainers for drivers supervised the
most commits and authors and maintainers for mm supervised the
fewest. A dual interpretation would be that the drivers module is
the easiest to maintain and the mm module is the hardest.

The coefficients for log "ﬁf ’ mean the power at which main-
tainer productivity increases as more maintainers are added to a
file. In particular, a for the number of files is -0.4, a for the num-
ber of commits is -0.54, and « for the number of authors is -0.59.

nMtr
“nF but

the number of maintainers goes up, so two maintainers can handle

-2 more files (or commits, or authors) than one maintainer. Four

V2

maintainers can handle twice as much as one maintainer.
In summary, adding more maintainers to a file yields only a
power of 1/2 increase in productivity, thus, four parallel maintainers

+ mody + M

Individual productivity decreases approximately by

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Ratio of

drivers

= prem
Aiﬂ%@g 15 asaEa a4

292444444444“444444444“ %

FIHHH

Number

2010 2011 2012 2013 2014 2015

Calendar month from April 2009

Minghui Zhou, Qingying Chen, Audris Mockus, and Fengguang Wu

Number

Ratio of (yearly

s, 4
s W g l“

o | prvrey
- 3 I 4 /44‘\44”M\4
: x

2009 2010 2011 2012 2013 2014 2015

Calendar month from April 2009

Figure 11: Ratio of number of authors to number of maintainers

Fraction of who are for 80% of files

drivers

Fraction
0.4
I

0.2

2012 2013

Calendar year
who are

Fraction of for 80% of

0.8
L

—+— drivers
—2— arch
i —3— fs
—4—
——

0.6

net
sound
kernel

Fraction
0.4
I

0.2

0.0

2009 2010 2011 2012 2013

Calendar year
who are

Fraction of for 80% of authors

drivers

Fraction
0.4

P

A - -
et T

- -~

0.2

0.0

2009 2010 2011 2012 2013 2014 2015 2016

Calendar year

Figure 12: Fraction of maintainers who are responsible for
80% of files

34

Table 3: Results of modeling nfAdj/nAuth/nCmt: adjusted
R?:0.92/0.65/0.73 (* indicates p-value < .001)

nfAdj Std. | nAuth Std. | nCmt Std.

Error Error Error

(Intercept] 2.93° 008 [—0.47 016 |-021 0.24
log 2MIr| —0.41* 001 | -0.59* -0.01 | —0.54* 0.02
drivers | —0.12* 0.02 | 0.27° 0.02 |0.25* 0.04
fs -0.34* 0.04 | -0.19" 005 |-0.17 0.08
kernel | -1.43* 0.06 | —0.34" 0.08 | -0.39" 0.11
mm -2.53" 006 | —0.68* 0.07 | -0.75" 0.10
net -0.22* 004 |-0.13 005 | —0.26" 0.07
sound | —0.41" 006 | —0.29" 0.08 [-0.18 0.1

are needed to double the overall output. This suggests limits to the
scalability that can be achieved by adding multiple maintainers to
the same files.

4 MECHANISMS DIFFERENTIATING
MODULES

Different maintainers’ contributions on the seven central modules
of the Linux kernel appear to differ in a consistent way. A review
of various artifacts and interviews with the maintainers of Linux
kernel suggests three mechanisms at play: architectural features,

commercial support, and maintainer’s skill sets.
Architectural features. The seven modules under study were cho-

sen for distinct roles they play in the architecture of the Linux
kernel. We also use the core-peripheral classification; for example,
mm and kernel are core, drivers and arch are peripheral. As we
have observed, after more than two decades of evolution, the core
modules appear to have become mature and have less development
activity and therefore fewer people looking after them. However,
maintainers’ work on these modules tends to be widely distributed,;
for example, 80% of the work is accomplished by 80% of the main-
tainers in mm. At the other extreme, the peripheral modules like
drivers keep growing to satisfy various needs of hardware manufac-
turers and, therefore, involve large numbers of commits, authors,
and maintainers. In drivers, 80% of the work is accomplished by only
10% of the maintainers. This highly uneven distribution of work
suggests that some drivers maintainers may experience increasing
workloads.

Commercial support. Most Linux code is currently developed
by well-paid engineers.” Approximately 80% of kernel developers

“https://s3.amazonaws.com/storage.pardot.com/6342/120970/1f pub_
whowriteslinux2015.pdf

On the Scalability of Linux Kernel Maintainers’ Work

Table 4: Commercial support measures

drivers | arch fs | net | sound | kernel | mm

nF 6215 | 5463 | 212 | 332 114 65 0

nk 28| 32| .11 .19 .05 18 0
allF

are paid according to a senior Linux maintainer [27]. The most
obvious and compelling reason is commercial interest of large (and
rich) companies in the continued robust health of Linux. Twenty
years ago, Linux was the plaything of hobbyists and supercomputer
makers — today, it powers everything from smartphones (Android)
to wireless routers to set-top boxes.

This commercial interest may not be uniform for different parts
of the Linux kernel. The drivers module, for example, has strong
support from hardware manufacturers interested in increasing the
market for their products. However, modules like mm do not appear
to have features that would represent a business opportunity for
numerous companies. Table 4 lists the two measures that are likely
to reflect commercial interests in the actual modules of the Linux
kernel (modp): the number of supported files (nF) and the fraction
among all files (%) The drivers module has the largest number
of supported files, followed by arch. The mm module has none. The
biggest fraction of supported files is in arch, followed by drivers.
This may partially explain the differences of growth in different
modules. In particular, modules like mm do not have commercial
backing and may have to seek contributions from the community.

Breadth of maintainers’ reach. “At the functional level, different
modules do vastly different things, and require vastly different skill
sets to be able to contribute in a meaningful manner” as one inter-
viewee noted. Presumably, most maintainers specialize in a single
area. This could be illustrated with two measures: the fraction of
maintainers who exclusively maintain their primary module mods
and the fraction of all maintainers of mody for whom mody = modyy,
as shown in Table 5. Let (M, mody) = 1 <= 3m, f € mod :
I(f,M, m) = 1 and 0 otherwise where I(f, M, m) is defined in Sec-

tion 2.2.3. The first fraction is then
M:(mody=mody) (M maintains only modyr) I(MvadO)
ZM:modM:modo I(MsmOdO)
ZM:modM:modo I(M, mod,)
>m I(M,mody)
For modules sound, kernel, and mm, no more than half of the

maintainers primarily work on these modules, whereas more than
80% of the drivers maintainers work either primarily or exclusively
on drivers. A driver implementation is relatively self-contained.® A
single developer can add a new device driver, and that addition re-
quires minimal interaction with other kernel developers. However,
“the skill level required to work on kernel/mm versus fixing up
spelling or whitespace changes in drivers/staging is vastly different”
according to another respondent. The fraction of maintainers for
whom kernel and mm are primary modules and who work exclu-
sively on kernel and mm (the first row of Table 5) may be relatively
high because so few maintainers are capable of maintaining these
modules and the ones that do, may not have time for other parts of
the kernel. For example, “mm is a very tiny subsystem, yet a very
core one, so the people working on it are much more specialized
and experienced than AAYnormal’ driver developers” Meanwhile,
the tasks of driver development are often considered to represent

. The second frac-

tion is

35

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Table 5: Multi-module maintainers

drivers | arch fs | net | sound | kernel | mm
Exclusive 0.89 | 0.35 | 0.68 | 0.54 0.57 0.59 | 0.77
Primary 0.84 | 0.70 | 0.70 | 0.64 0.43 0.50 | 0.48
#one-time contributors over time
4
s —+— drivers/10 ka
© —2— arch/3
o —3— fs/1
° —4— net/1
o | — sound/1
g 7 If 9—6— kernel/1
EE A mm/1
© -~ -2

2009 2010 2011 2012 2013 2014 2015

Calendar year

Figure 13: Number of OTCs in different modules

lower entry barrier for newcomers.!’ Our models of productivity
in RQ5 support the view that the drivers module is the easiest from
the maintainers’ perspective as well: it is the easiest in terms of
commits and authors and the second easiest (after arch) in terms
of files maintained. Figure 13 shows that the mm module has the
fewest OTCs; each year it has fewer than ten (with kernel having
fewer than twenty), whereas the drivers module has 400-600 OTCs
each year (modp).

In summary, each module implements different technical fea-
tures and may attract different groups of contributors with distinct
profiles, unique skill sets, and particular commercial interests. The
ecosystem uses community support for central tasks and central
code, but the modules of the architectural periphery are most effec-
tively supported by commercial entities (except for the kernel mod-
ule). The ecosystem grows primarily because commercial entities
add code to the drivers module; the community resolves conflicts
in core modules such as mm. Other systems may learn from these
strategies to adapt and scale their efforts, e.g., to distribute their
resources based on architectural features and to utilize commercial
support and community strength on different parts of the system.

5 LIMITATIONS

We used the Git repository of the Linux kernel to reconstruct past
versions of the MAINTAINERS file and associated scripts; we ob-
tained a list of maintainers for each file. Only individuals explicitly
labeled as “maintainer” were considered. People who do not want
their names to appear in the MAINTAINERS file are excluded. Fur-
ther, we unified multiple identities for many of the maintainers and
authors based on email, login, and full name; some of these identi-
fications may have been erroneous. Our approach may not capture
all ways in which maintainers may spend their effort. For example,
the participation in discussion groups was not considered. Because
we considered only the mainline repository of the Linux kernel,
a large number of patches that did not gain acceptance into the
mainline repository were excluded [12]. Reviewing and rejecting

WOhttps://www.linux.com/news/software/linux-kernel/804403-three-ways-for-
beginners-to-contribute-to-the-linux-kernel/eudyptula-challenge.org

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

these patches consume maintainers’ effort even though they are
not accepted into the mainline repository. However, according to
one interviewee, “It’s easier for the maintainer to not accept your
code at all. To accept it, it takes time to review it, apply it, send
it on up the development chain, handle any problems that might
happen with the patch, accept responsibility for the patch, possibly
fix any problems that happen later on when you disappear, and
maintain it for the next 20 years.” Therefore, it is not unreasonable
to assume that the accepted commits can represent the bulk of the
maintainers’ efforts.

To increase internal validity we interviewed Linux kernel main-
tainers and inspected various online resources to validate our find-
ings. We checked the assumptions for the regression model and
log-transformed the predictors to make the model coefficients more
interpretable and to reduce the influence of the potential outliers.

The uniqueness of the Linux kernel limits external validity. As
one of the largest cooperative software projects ever attempted [17],
the Linux kernel may have unique practices. Despite that, other
projects might benefit from the practices of Linux kernel; as one
interviewee said: “I've been spending lots of time helping other
projects scale that are having problems. ... we work together to see
if they can adapt things that we do, or I help them identify the pain
points they have, they try a change, iterate, and see if it’s better or
not” Yin [37] wrote that the question of how to generalize from a
single case is challenging for case studies. The short answer is that
case studies are generalizable to theoretical propositions and not
to populations or universes. The theoretical propositions in this
study are the quantification of effort spent by the maintainers in
the project and the quantification of work across maintainers.

6 RELATED WORK

The division of labor and distribution of tasks is a common theme
in the FLOSS literature because FLOSS projects rely on volunteers
who are dispersed across organizational and geographical bound-
aries. Lee and Cole [18] reported that the Linux community has a
project leader, several hundred maintainers, and thousands of de-
velopers; the patterns of Linux resemble the patterns of community
organization revealed in other studies. For example, Ducheneaut [8]
presented a pattern with core developers in the center, surrounded
by the maintainers, patchers (who fix bugs), bug reporters, docu-
menters, and, finally, the users of the software. They characterized
a community as a series of concentric circles; each circle is occu-
pied by people playing a particular role in the development process.
In this study we focus on the central circle of the Linux kernel
ecosystem: maintainers.

How developer communities evolve and sustain has been subject
to numerous investigations. Two constructs are considered crucial
to an FLOSS team’s input effectiveness [30]: the number of devel-
opers that have been attracted and retained to work on the team
(team size) and the amount of effort those developers have devoted.
Two factors shape the lifecycle of a successful FLOSS project [3]: a
widely accepted leadership setting the project guidelines and driv-
ing the decision process, and an effective coordination mechanism
among the developers based on shared communication protocols.
Studies of the progressive integration of new members [8, 29, 32, 40]
and the evolution of sustainable groups [15, 25] are common. For

Minghui Zhou, Qingying Chen, Audris Mockus, and Fengguang Wu

36

example, Zhou and Mockus [40] found that individuals’ initial will-
ingness and environment affect their chances of staying long term
with the FLOSS project.

The laws of software evolution were stated by Lehman [19] and
have been widely observed by others [22, 35, 38]. Evolutionary
studies of long-lived, large-scale FLOSS ecosystems have attracted
some attention [5, 11]. Wermelinger et al. [34, 35] found that the
Eclipse architecture is always growing but components on a layered
plugin-architecture dependency graph exhibit different evolution
patterns. Fortuna et al. [9] found that the modularization of the
Debian network over time in various operating system installations
often parallels ecological relationships between interacting species.

Building on prior work we investigated Linux maintainers to
quantify the types of tasks they do and the relationships between
their work patterns and architectural and governance aspects of the
contributors they work with. Whereas developers’ work has been
extensively studied [4, 10, 23, 36, 39], we adopted existing metrics,
and also added new metrics for maintainers.

7 CONCLUSIONS

We investigated maintainer activities in the Linux ecosystem and
quantified maintainers’ work based on the files they maintain, the
change activity in the maintained files, and the number and churn
of external contributors they must deal with. We found that most of
the modules did not grow appreciably over the last decade; the ma-
jority of code was added to three modules: drivers, architecture, and
net. However, the number of files has grown for all modules, which
may be the cause of concern expressed in public discussions. We
found systematic yet stable differences among modules suggesting
that the architectural features, commercial interests, or module-
specific practices led to distinct sustainable maintenance equilibria.
We also found that the workloads of the average maintainer and
the median maintainer do not appear to increase, thus some risks
hypothesized in the community are not evident. However, the distri-
bution of work among maintainers showed that 20/80 rule applies
for most modules, suggesting that a few maintainers may bear the
brunt of the increased workload.The practice of assigning multi-
ple maintainers to a file yielded only a power of 1/2 increase in
productivity.

Our proposed framework to quantify maintainer practices and
productivity scaling may lead to a better understanding of the
factors that allow rapidly growing projects to be sustainable and
to practices that reduce risk of project failures. The mechanisms
underlying such large-scale complicated production remain to be
explored because the ecosystem never stops evolving. In the words
of one maintainer: “5 years from now it [Linux kernel] will look
different depending on the people involved, the external forces
happening, and what the needs of the project is”

ACKNOWLEDGMENTS

This work is supported by the National Basic Research Program
of China Grant 2015CB352200, the National Natural Science Foun-
dation of China Grants 61432001, 61421091, and 61690200 and the
National Science Foundation Award 1633437.

To facilitate replications or other types of future work, we pro-
vide data and scripts used in this study online:
https://github.com/minghuizhou/maintainerAnalysis.

On the Scalability of Linux Kernel Maintainers’ Work

REFERENCES

(1]

(2]

(3]
(4]

[10]

[11]

[12]

[13]

[14]

[19]

[20]

AJ. Albrecht and Jr. Gaffney, J.E. 1983. Software Function, Source Lines of
Code, and Development Effort Prediction: A Software Science Validation. IEEE
Transactions on Software Engineering SE-9, 6 (November 1983), 639-648.

P. Anbalagan and M. Vouk. 2009. On predicting the time taken to correct bug
reports in open source projects. In IEEE International Conference on Software
Maintenance, 2009. 523-526.

Cristina Rossi Andrea Bonaccorsi. 2003. Why Open Source software can succeed.
Research Policy 32 (2003) (2003), 1243-1258.

G. Avelino, L. Passos, A. Hora, and M. T. Valente. May 2016. A novel approach
for estimating truck factor. In IEEE 24th International Conference on Program
Comprehension (ICPC), 2016. 1-10.

Christopher Bogart, Christian Kastner, James Herbsleb, and Ferdian Thung.
2016. How to break an APIL: Cost negotiation and community values in three
software ecosystems. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, 109-120.

Frederick P. Jr. Brooks. 1975. he Mythical Man-Month. Addison-Wesley.

J. W. Creswell. 2009. Research design: Qualitative, quantitative, and mixed methods
approaches (3rd edition ed.). Sage Publications.

Nicolas Ducheneaut. 2005. Socialization in an Open Source Software Community:
A Socio-Technical Analysis. Computer Supported Cooperative Work (CSCW) 14, 4
(2005), 323-368. http://dx.doi.org/10.1007/s10606-005-9000-1

M. A. Fortuna, J. A. Bonachela, and S. A. Levin. 2011. Evolution of a modular
software network. Proceedings of the National Academy of Sciences of the United
States of America 108, 50 (2011), 19985-9.

Daniel M German. 2003. The GNOME project: a case study of open source, global
software development. Software Process: Improvement and Practice 8, 4 (2003),
201-215.

Daniel M German, Bram Adams, and Ahmed E Hassan. 2013. The evolution of
the R software ecosystem. In 17th European Conference on Software Maintenance
and Reengineering (CSMR), 2013. IEEE, 243-252.

Daniel M. German, Bram Adams, and Ahmed E. Hassan. 2016. Continuously
Mining Distributed Version Control Systems: An Empirical Study of How Linux
Uses Git. Empirical Softw. Engg. 21, 1 (Feb. 2016), 260-299. DOI:http://dx.doi.
org/10.1007/s10664-014-9356-2

T. Graves and A. Mockus. 2001. Identifying Productivity Drivers by Modeling
Work Units Using Partial Data. Technometrics 43, 2 (May 2001), 168-179.

Guido Hertel, Sven Niedner, and Stefanie Herrmann. 2003. Motivation of software
developers in Open Source projects: an Internet-based survey of contributors
to the Linux kernel. Research Policy 32, 7 (2003), 1159 — 1177. http://www.
sciencedirect.com/science/article/pii/S0048733303000477

R. E. Kraut and P. Resnick. 2012. Building successful online communities: Evidence-
based social design. Cambridge, MA: MIT Press.

Greg Kroah-Hartman. 2013. I don’t want your code: Linux Kernel Maintain-
ers, why are they so grumpy?, In https://github.com/gregkh/presentation-linux-
maintainer/blob/master/maintainer.pdf. (2013).

Greg Kroah-Hartman, Jonathan Corbet, and Amanda McPherson. March 2008.
Linux Kernel Development. The Linux Symposium (March 2008).

Gwendolyn K. Lee and Robert E. Cole. 2003. From a Firm-Based to a Community-
Based Model of Knowledge Creation: The Case of the Linux Kernel Development.
Organization Science 14, 6 (2003), 633-649. http://dx.doi.org/10.1287/orsc.14.6.
633.24866

Meir M Lehman, Juan F Ramil, Paul D Wernick, Dewayne E Perry, and Wladys-
law M Turski. 1997. Metrics and laws of software evolution-the nineties view.
In Software Metrics Symposium, 1997. Proceedings., Fourth International. IEEE,
20-32.

Fink M. 2003. The business and economics of Linux and open source. Prentice Hall
Professional.

37

[21

[22]

[23]

[24

[25

[26]
[27]
(28]

[29]

[30

(31]

(32]

(33]

[35

[36

[37

(38]

(39]

[40

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

A. Meneely and L. A. Williams. 2009. Secure open source collaboration: an
empirical study of linus’ law. In Proceedings of the ACM 2009 Conference on
Computer and Communications Security.

Tom Mens, Maalick Claes, Philippe Grosjean, and Alexander Serebrenik. 2014.
Studying evolving software ecosystems based on ecological models. In Evolving
Software Systems. Springer, 297-326.

A. Mockus, R. F. Fielding, and J. Herbsleb. 2000. A Case Study of Open Source
Development: The Apache Server. In 22nd International Conference on Software
Engineering. Limerick, Ireland, 263-272. http://dl.acm.org/authorize?2580
Audris Mockus and David M. Weiss. 2000. Predicting Risk of Software Changes.
Bell Labs Technical Journal 5, 2 (April-June 2000), 169-180.

SiobhAan O’Mahony and Fabrizio Ferraro. 2007. The Emergence of Governance
in an Open Source Community. Academy of Management Journal 50, 5 (Oct 1
2007), 1079-1106.

D. L. Parnas. 1972. On the Criteria to be Used in Decomposing Systems into
Modules. Commun. ACM 15, 12 (1972), 1053-1058.

Sarah Sharp. December, 2014. Linux Kernel Introduction. In

https://www.slideshare.net/saharabeara/linux-kernel-introduction.
Makse H A. Song C, Havlin S. 2005. Self-similarity of complex networks[J].

Nature 7024 (2005), 392-395.

Igor Steinmacher, Tayana Conte, Marco Aurélio Gerosa, and David Redmiles.
2015. Social Barriers Faced by Newcomers Placing Their First Contribution in
Open Source Software Projects. In Proceedings of the 18th ACM Conference on
Computer Supported Cooperative Work & Social Computing (CSCW ’15). ACM,
New York, NY, USA, 1379-1392.

Katherine J. Stewart and Sanjay Gosain. 2006. The Impact of Ideology on Ef-
fectiveness in Open Source Software Development Teams. MIS Quarterly 30, 2
(2006), pp. 291-314.

Linus Torvalds. 1999. The Linux Edge. Commun. ACM 42, 4 (April 1999), 38-39.
DOI:http://dx.doi.org/10.1145/299157.299165

Georg von Krogh, Sebastian Spaeth, and Karim R. Lakhani. 2003. Community,
joining, and specialization in open source software innovation: a case study.
Research Policy 32, 7 (July 2003), 1217-1241.

Georg von Krogh and Eric von Hippel. 2003. Special issue on open source
software development. Research Policy 32, 7 (2003), 1149 — 1157. http://www.
sciencedirect.com/science/article/pii/S0048733303000544

Michel Wermelinger and Yijun Yu. 2008. Analyzing the Evolution of Eclipse
Plugins. In Proceedings of the 2008 International Working Conference on Mining
Software Repositories (MSR "08). ACM, New York, NY, USA, 133-136. http://doi.
acm.org/10.1145/1370750.1370783

Michel Wermelinger, Yijun Yu, and Angela Lozano. 2008. Design principles in
architectural evolution: a case study. In IEEE International Conference on Software
Maintenance, 2008. IEEE, 396—-405.

Jialiang Xie, Minghui Zhou, and Audris Mockus. 2013. Impact of Triage: a Study
of Mozilla and Gnome. In ESEM 2013. Baltimore, Maryland, USA, 247-250.
Robert K. Yin. 2009. Case Study Research: Design and Methods. Fourth Edition.
SAGE Publications, California.

Liguo Yu and Alok Mishra. 2013. An empirical study of LehmanaAZs law on
software quality evolution. International Journal of Software & Informatics 7, 3
(2013), 469-481.

Minghui Zhou and Audris Mockus. 2010. Developer Fluency: Achieving True
Mastery in Software Projects. In ACM SIGSOFT / FSE. Santa Fe, New Mexico,
137-146. http://dl.acm.org/authorize?309273

Minghui Zhou and Audris Mockus. 2015. Who Will Stay in the FLOSS Commu-
nity? Modeling Participant’s Initial Behavior. Software Engineering, IEEE Transac-
tions on 41, 1 (Jan 2015), 82-99. DOI : http://dx.doi.org/10.1109/TSE.2014.2349496
Jiaxin Zhu, Minghui Zhou, and Hong Mei. 2016. Multi-extract and Multi-level
Dataset of Mozilla Issue Tracking History. In Proceedings of the 13th International
Conference on Mining Software Repositories (MSR ’16). ACM, New York, NY, USA,
472-475. DOI:http://dx.doi.org/10.1145/2901739.2903502

	Abstract
	1 Introduction
	2 Methodology
	2.1 Qualitative Investigation
	2.2 Quantitative Analysis

	3 Results
	4 Mechanisms differentiating modules
	5 Limitations
	6 Related work
	7 Conclusions
	References

